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In view of recent advances in X-ray technology it may be possible to deduce 
information regarding chemical bonding from experimentally determined 
electron densities. The construction of difference density maps represents a 
possible intermediate step in attaining this goal, but unresolved questions 
exist regarding appropriate definitions and interpretations of such maps. To 
shed light on these problems, theoretical difference densities are determined 
by ab-initio calculations for the molecules H2, He2, Li2, Be2, N2 and F2 at 
various internuclear distances. An examination of these difference density 
maps shows that the identification of those features of molecular electronic 
densities which are related to chemical bonding requires a judicious construc- 
tion and a careful analysis of difference densities between molecules and their 
constituent atoms. Chemically relevant deformations can be small compared 
to density differences between different components of degenerate atomic 
groundstates and, consequently, chemical information can be swamped when 
difference densities are formed with spherically averaged atoms. To avoid 
such artifacts, oriented unaveraged atomic states must be subtracted for the 
formation of meaningful Chemical Difference Densities. The latter are 
explainable by means of a partitioning in terms of contributions from non- 
bonded inner shells, from lone pairs and from sigma and pi bonding shells. 
Such partitionings can be obtained through decompositions in terms of natural 
orbitals from correlated wavefunctions. Canonical SCF orbitals prove to be 
considerably less effective. Internuclear distances are found to have a great 
influence upon difference densities regardless of the attractive or repulsive 
nature of the interactions. 
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I. Introduction 

Recent advances in X-ray techniques have made it possible to determine molecular 
electron densities so accurately that, at least for the lighter elements, the remaining 
margin of error is smaller than those changes in electron densities which are 
believed to occur when chemical bonds are formed [1-5]. Experimentalists have 
therefore expressed the hope of being able to measure features of molecular 
electron densities which would permit inferences to be drawn regarding charac- 
teristics of chemical bonding. 

This objective cannot be achieved by a mere examination of raw molecular 
densities. One reasonable approach consists of studying differences between 
molecular and atomic densities, the so-called difference densities (DD's) [6a]. In 
the implementation of such a program the question arises which atomic densities 
should be subtracted from the molecular density to form suitable DD's. There 
is no way of  observing the densities of atoms in a molecule as distinct from the 
molecular density. In fact, so far it has not even been possible to measure electron 
densities of free atoms except for some noble gases. Atomic densities can however 
be calculated theoretically with considerable accuracy and experimentalists have 
therefore used theoretically determined atomic densities in combination with 
experimentally determined molecular densities to form difference densities. But 
even so, there remain questions. 

For one thing, there are many ways of fitting an atom into a molecule. Theorists 
have long been familiar with the fact that it is by no means trivial to deduce 
appropriate "atoms in molecules" from molecular electronic wavefunctions and 
it stands to reason that similar problems are encountered in the selection of those 
"promolecules" which are most suitable for constructing meaningful difference 
densities. Any arbitrary convention regarding standard reference densities would 
seem inadequate for insuring that the resulting difference densities make sig- 
nificant information manifest. 

For another thing, it is not at all obvious what physical inferences can in fact be 
drawn from difference densities. Since electron densities have an almost immedi- 
ate conceptual appeal [6b], there seems to exist a widespread expectation that 
illuminating insights can be obtained in an uncomplicated and straightforward 
manner by "common sense" reasoning. Unfortunately such is not the case and 
it has proven to be difficult to establish physical or chemical interpretations for 
the features found on DD maps. 

Fortunately, quantum chemical methods, too, have made noteworthy strides in 
the past decades and densities can now be calculated for many molecules with 
a high degree of accuracy [2]. It is therefore possible to compute difference 
densities theoretically and thereby to investigate which DD formulations are apt 
to yield chemical information and what can be learned from them. It would seem 
likely that such an approach, when pursued with care, can yield answers which 
would be difficult to obtain in other ways and that knowledge regarding chemical 
bonding will be gained more readily when the methodological sophistication in 
contemporary experimental technology and in the mathematical deduction of 
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electron densities from X-ray measurements is matched by a corresponding 
sophistication in relating the resulting information to quantum chemical theory 
of a sufficient degree of accuracy. 

It is the intent of the present investigation to contribute towards such a synthesis 
by analyzing theoretically calculated difference densities for a number of diatomic 
molecules in greater depth than has been done in the past. It proves possible to 
sort out characteristic bonding and non-bonding DD contributions by employing 
oriented ground state atoms as reference densities (instead of the conventional 
spherically averaged ones) to form DD's, by using natural orbitals of correlated 
wavefunctions (rather than the commonly used canonical SCF MO's) to decom- 
pose the total densities, by relating the behavior of the valence electrons to the 
shapes and the interaction ranges of the effective core potentials acting on them, 
and by understanding density changes in terms of orbital interferences, orbital 
contractions and non-bonded repulsions. The variations of DD's with internuclear 
distances also disclose valuable information. 

The methods used to calculate the atomic and molecular wavefunctions are 
described in Sect. 2. In Sect. 3, certain elementary features of difference densities 
are discussed pertaining to bonding electrons, to non-bonding electrons and to 
the effect of inner cores. In this context the molecules H2, He2, Li2, and Be2 are 
considered. In Sect. 4, the difference density of F2 is examined in considerable 
detail. In Sect. 5, the difference density of Nz is analyzed. The conclusions and 
inferences which we draw from these studies are summarized in Sect. 6. 

2. Description of method 

The results reported here are obtained by FORS calculations. The FORS method 
[7a] is an MCSCF approach where the number of configuration-generating orbitals 
(CGO's) in each irreducible representation of the relevant symmetry group is 
chosen to be equal to the number of minimal-basis-set atomic orbitals in that 
irrep. All configurations that can be generated from these CGO's and that are 
compatible with the geometric and spin symmetry of the desired state are included 
in the CI expansion, except that the inner orbitals remain always doubly occupied. 
This set of configurations spans a Full Reaction Space. The configuration mixing 
coefficients as well as the orbital shapes are then optimized simultaneously by 
an MCSCF procedure and the resulting configuration space is then called the 
Full Optimized Reaction Space (FORS). The FORS model is "size consistent" 
and, in contrast to the SCF approximation, allows for proper dissociation, a 
feature which is essential for the present investigation. 

An important feature of the full configuration space is its invariance under 
non-singular transformations among the optimal CGO's (i.e. while the individual 
configurations generated from the transformed CGO's are different, the configu- 
ration space spanned by all of them is identical to the one spanned by the original 
CGO's). Hence, the molecular wavefunctions and energies are the same regardless 
of whether the original or the transformed CGO's are used. For this reason a 
FORS wavefunction can also be visualized by the following model. The full 
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valence configurat ion space is generated f rom the minimal-basis-set atomic 
orbitals o f  the atoms in the molecule. The best wavefunct ion in this "Full  Reaction 
Space"  is then found,  where moreover  the minimal basis set AO'  s are allowed to 
deform for optimal adaptation to the molecular surroundings. 

This adapta t ion  is achieved by the orbital opt imizat ion implicit in the M C S C F  
process and requires the expansion of  the configuration generating orbitais in 
terms of  an extended set o f  atomic orbital basis functions. The extended bases 
used here consist o f  even-tempered gaussion primitives contracted in Raffenetti- 
type fashion [8]. Specifically the following bases ale employed:  (14s7p2d/4s3p2d) 
for  the atoms F, N, Be; (12s3p/4s3p) for Li; (8s3p/4s3p) for  helium; and 
(6s2p/2s2p) for hydrogen.  For  the isolated atoms, these extended bases yield the 
uncontrac ted  (14s, 7p) SCF function in F, N, Be, and the uncont rac ted  12s, 8s 
and 6s wavefunct ions in lithium, helium and hydrogen,  respectively. 

in  the calculations for the He2 system the full configuration space was fur thermore 
enlarged by increasing the number  of  configurat ion generating orbitals f rom ~rg, 
o'u (corresponding to the minimal basis set on each atom) to lcrg, 2~rg, 3o-~, lo'u, 
2cru, 3~u, 7rxg, ~'xu, ~'yg, Try, (corresponding to the AO set ls, 2s, 2p~, 2py, 2p~ on 
each atom). These He2 calculations were thus C A S S C F  [7b] calculations with 
149 configurations (the corresponding calculations for the He atom had 5 configu- 
rations). In fact, the D D ' s  reported in Fig. 1 F - K  come from these calculations. 
Within the resolution shown on these maps,  the inclusion of  this addit ional 
correlation had however  no discernable effect on the DD's .  

Selected energies resulting f rom various calculations are listed in Table 1. 

Table 1. Atomic and molecular energies 

Molecule F2 N2 Be2 Li2 H2 
R ~ Equilibrium a 2.68 2.06 4.50 5.00 1.40 

E(SCF) b -198.76401 -108.98731 -29.13160 -14.87074 -1.12873 
E(FORS) b -198.84432 -109.13441 -29.22107 -14.89821 -1.14677 
2E(Atom, FORS) b -198.81558 -108.80073 -29.23345 -14.86514 -0.99968 
LxE(SCF) c 1.40 -5.08 2.77 -0.15 -3.51 
AE(FORS) c -0.78 -9.08 0.34 -0.90 -4.00 
AE(Exptl) ~ -1.66 -9.91 -0.08 d -1.06 -4.75 

Molecule He2 He2 He2 2He 
R a 0.6 1.5 2.5 

E(SCF = FORS) -3.44506 -5.37926 -5.68194 
E(CASSCF) b'e -3.53557 -5.45623 -5.75419 
AE(SCF = FORS) ~ 62.00 9.36 1.12 
AE(CASSCF) c'~ 61.46 9.20 1.09 

-5.72301 
-5.79442 

a In bohr 
b In hartree 
c Binding energy in eV 
d Theoretical value, from [17] 

149 configurations, see text 
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Because of  the aforementioned invariance of  the Full Optimized Reaction Space 
under orbital transformations, this configuration space can also be generated 
from the natural orbitals of the FORS wavefunction, the FORS-NO's. The latter 
have the great conceptual advantage that the total FORS density is simply the 
sum of the densities of the individual FORS-NO's, weighted with their occupation 
numbers. All orbital decompositions reported in the sequel are therefore based 
on FORS-NO's. 

For the sake of comparison, single-configuration restricted HF-SCF calculations 
were also performed. In these cases, the orbital decompositions are based on the 
densities of  the canonical SCF orbitals. 

All plots exhibited in the subsequent sections represent DD's, i.e. differences of 
electron densities. They display contours DD -~ constant in planes containing the 
internuclear axis. Thin lines represent positive D D  values, dashed lines represent 
negative D D  values and bold lines correspond to D D  = O. The increment between 
adjacent contours is 0.04 electron/ bohr 3= 0.27 electron/ A 3 in all figures, with the 
exceptions of  Figs. 1 and 3 where the increments are stated explicitly. Since theory 
as well as good instruments under favorable conditions can yield electron densities 
in bond and lone-pair regions as accurate as about 0.01 electron/]~ 3, the details 
shown in the plots are significant. 

3. Elementary features of difference densities 

A closer examination of difference densities in various molecules shows rather 
quickly that deeper insights are gained when the variation of  the DD's with the 
geometric parameters is included in the analysis. In the subsequent sections we 
shall furthermore see that these variations can be explained through a decomposi- 
tion of the total difference density in terms of suitable orbital contributions 
because the latter exhibit a simpler behavior. In the present section we discuss 
three elementary features which are important in this context. They are: (i) the 
difference density for two electrons (one on each atom) between which a bonding 
interaction develops; (ii) the difference density for two lone pairs (one on each 
atom) between which a nonbonded repulsion develops; (iii) the effect of atomic 
cores on difference densities. 

3.1. The electron pair bond in H2 

The electron pair bond between singly occupied atomic orbitals is the most 
common covalent bond type by far and difference densities stemming from such 
bonds constitute essential contributions to the total difference densities of many 
molecules. The simplest prototype is found in the hydrogen molecule, and an 
examination of its difference density yields instructive insights, even though atoms 
from higher periods exhibit distinctive modifications. 

Density difference maps of H2 have been calculated and discussed in the literature 
for a number of approximations [9, 10]. Figure 1A-E exhibits DD maps of H: 
obtained from FORS calculations. 
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Fig. 1. Difference densities for H 2 (panels A-E)  and He 2 (panels F-K). The internuclear distances 
(in units of  a = one bohr) are indicated next to each panel. The increments between adjacent contours 
are 0.004 e /a  3 for panels A, B, C and for the negative contours on panels D, E. They are 0.01 e /a  3 
for the positive contours on panels D, E and for all contours on panels F-K 
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At large distances (Fig. 1A), where the atomic orbitals are just beginning to 
overlap, the density increases at and around the bond center and it decreases at 
and around the nuclei, on the "bond side" as well as all the way on the side 
away from the bond. The DD describes therefore a population transfer from the 
region around the nuclei towards the bond center, and this charge shift is most 
easily described as the result of the interference of the practically undeformed 
atomic orbitals which are being superimposed. Such a modification of the atomic 
density lowers the molecular energy because it lowers the kinetic energy [10, 11]. 
There also occurs a concomitant interference increase of the potential energy, 
but it of[sets the kinetic energy decrease only partially. 

If this interference ettect would remain dominant at shorter internuclear distances, 
then the region of charge accumulation (i.e. positive DD) would shrink corre- 
spondingly. Figure 1A-E shows however that, in fact, the extent of this region 
remains nearly unchanged in absolute value along the internuclear axis so that 
it appears as if the nuclei dive into this region of  positive DD as they approach 
each other. This behavior of the DD is due to the fact that the atomic orbitals, 
while being superimposed, contract as the nuclei approach each other [10, 12]. 
The contractive effect modifies the interference effect to give the depicted DD's. 
In the lateral direction it manifestly leads to a contraction of the electron charge 
in the direction of  the internuclear axis. 

At medium distances (Fig. 1B-D) the atomic orbital contraction is best understood 
as a response which is triggered by the decrease of the local kinetic energy density 
(i.e. h2lVfftl2/2m) in the central region. This is seen most easily at the equilibrium 
distance (Fig. 1D) because, there, the virial theorem must be rigorously satisfied 
in its simple form E = - T  = V/2 and, in H2, it applies entirely to the two bonding 
electrons. Without atomic orbital contraction the kinetic energy lowering due to 
interference [10] (or equivalently "contragradient overlap" [11]) would yield 
T < - V / 2 .  The orbital contraction increases the value of the kinetic energy T 
(in accordance with the Heisenberg uncertainty principle) by the amount required 
to reestablish the relation T = - V / 2 .  Since this density adjustment must be 
associated with a lowering of the total energy (in accordance with the variation 
principle), it must be such that the potential energy is lowered concomitantly. It 
is thus apparent that the atomic orbital contraction necessarily occurs in those 
regions where the potential energy is lowest. In H2 these regions lie near the two 
nuclei. We shall see that various molecules differ significantly in the location of 
these regions. (It should be mentioned that, in systems with several valence pairs 
of  different character, the requirement of  the virial theorem for the total system 
is often fulfilled by different types of  responses of  the different pairs [13].) 

From the equilibrium distance (Fig. 1 D) on towards shorter distances, the potential 
energy plays an increasingly important role. While, at large and medium distances, 
each electron experiences on the average one shielded and one unshielded 
nucleus, at shorter distances each electron experiences both nuclei increasingly 
as unshielded. At the same time the role of the kinetic energy diminishes because 
the interference between the atomic orbitals decreases with increasing overlap. 
(Interference between two ls-type atomic orbitals is maximal when S is about 



478 W . H . E .  Schwarz  et al. 

0.5 and it vanishes for S = 1 as well as for S = 0; it is approximately proportional 
to S ( S -  1) [10].) Consequently, the density pattern arising from orbital contrac- 
tion becomes increasingly dominated by the nuclear attractions. Concomitantly, 
the repulsion between the nuclei begins to dominate the molecular energy. 

The preceding discussion shows that, because of the compensating variations 
due to orbital interference and nuclear shielding, the DD of the H2 bonding 
orbital has a remarkably similar pattern at most internuclear distances, namely 
positive values in the central region and negative values in the outlying regions. 
Only the positions of the nuclei change: at large distances they lie in the negative 
part of the DD, at medium and short distances they lie in the positive part. This 
near constancy of the DD contrasts rather strikingly with the substantive change in 
the interatomic interaction from attraction to repulsion, as the atoms approach 
each other. 

Omitted from consideration here are the small density variations at very large 
distances which accompany van der Waals interactions, and the density rearrange- 
ments describing the transition to the united atom at very short distances. 

3.2. The non-bonded repulsions between the lone pairs of two helium atoms 

Many molecules contain valence electrons which do not participate in bond 
formation and, in most cases, they occupy lone pair orbitals. It has been recognized 
since the early days of quantum chemistry that the antisymmetry of many-electron 
wavefunctions results in the Pauli exclusion effect which, for several doubly 
occupied orbitals, can be visualized as an apparent repulsion between them. It 
implies that there exists a tendency for different lone pairs to avoid occupying 
the same part of space. For example, this tendency is the physical basis for the 
analysis of molecular geometries by Gillespie and Nyholm [14]. In agreement 
with this view, an energy increase is observed when two doubly occupied orbitals 
approach each other. This increase is kinetic in character and it is most easily 
understood if the orbitals are kept mutually orthogonal. (For such a system, this 
assumption is no loss of generality because of the invariance of a Slater deter- 
minant against non-singular orbital transformations.) As the orbitals overlap each 
other more and more, the orthogonalization requires an increasingly larger 
insertion of nodes in the orbitals with a concomitant increase in the kinetic energy 
density (h2]V~O12/2m) in some regions. In agreement with past conventions we 
shall use the term "non-bonded repulsion" to denote this "quasi-repulsive" effect. 

The simplest example is found in the He2 system. Here, the picture of two electrons 
occupying the bonding orbital and two electrons occupying the antibonding 
orbital is equivalent to the picture of two electrons occupying the left-lone-pair 
orbital and two electrons occupying the right lone-pair orbital. The orbital binding 
energy of each lone-pair orbital [-/3S/(1 -$2)] is equal to the average of the 
orbital binding energy of the bonding orbital [/3/(1 + S)] and that of the antibond- 
ing orbital [-/3/(1 - S)]. Since the overlap integral S is positive and the resonance 
integral/3 is negative, it is apparent that the antibonding orbital is more strongly 
antibonding than the bonding orbital is bonding, so that the "nonbonding" 
lone-pair orbitals are in fact somewhat antibonding. There is thus no qualitative 
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difference between antibonding repulsions and non-bonded repulsions; the 
difference is only one of degree. 

The He2 system yields instructive insights in the behavior of the difference density 
between two non-bonded lone-pairs. Figs. 1F-K exhibit DD maps of He2 for 
various internuclear distances, obtained from MCSCF calculations with large 
basis sets as discussed in Sect. 2. 

At large distances (Fig. 1F, G) the He2 DD pattern is exactly opposite to the 
one found in H2: now electron population is shifted from the central region in 
the bond into the regions near and around the nuclei. If the He2 DD is expressed 
as the sum of a bonding and an antibonding DD, then the bonding DD exhibits 
the same pattern as that found in H2, namely accumulation of charge in the 
center due to constructive interference, whereas the antibonding DD is the result 
of destructive interference resulting in a displacement of charge from the bond 
center towards the nuclear region. The latter contribution outweighs the former 
resulting in a residual charge shift from the bond to the nuclei. This is in complete 
analogy to the behavior of the orbital energies. Alternatively, the DD can be 
expressed as the sum of two orthogonal localized orbitals, one left and one right, 
each of which has a diminished electron density in the bond center and an 
enhanced density near and "behind" the nuclei due to the mutual orthogonality 
requirement. In any event, the charge shift implied by the DD patterns shown 
in Fig. 1F, G is associated with an overall destructive interference of the atomic 
orbitals which house the lone pairs. This destructive interference causes an 
increase in the kinetic energy density (h21VqJl2/2m) which is responsible for the 
antibonding energy, i.e. the nonbonded repulsion. At large distances the patterns 
of the DD's of H2 and He2 have therefore the same origin: namely the interference 
between the localized orbitals on the two atoms, constructive with kinetic energy 
lowering in H2, destructive with kinetic energy increase in He2. 

At shorter distances (Fig. 1H, I) the DD pattern of He~ changes drastically. In 
particular the positions of the nodes vary strongly with the internuclear distance. 
Some charge accumulation remains on the molecular axis "on the outside", at 
a distance of about 1.5a from the center. This feature is most easily understood 
in terms of the Pauli repulsions. It is similar to the lone pair density patterns 
found in heavier atoms, even though He has no p-orbitals in its valence shell. 

As the nuclei approach each other, the density contracts towards the nuclear and 
the internuclear region until the negative DD has disappeared between the nuclei 
(Fig. 1H). At short distances (Fig. lI and K) the DD pattern becomes somewhat 
similar to that of H2 with a density increase around and between the nuclei. The 
main difference between H2 and He2 is the position of the negative density minima 
in the outer region. In H2 they lie on the internuclear axis and vanish in the limit 
R ~ 0 ,  where constructive interference disappears. In He2 the Pauli repulsion 
causes rather stable local "lone pair" maxima in that region and the main density 
decrease occurs in an ellipsoidal shell around the molecular center. 

At large distances the repulsion between the two helium atoms is essentially 
caused by the non-bonded repulsion between the two doubly filled atomic lone 
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pair orbitals and, hence, kinetic in character. At short distances it is however due 
to the potential repulsion of the two nuclei which become increasingly less 
shielded from each other by the electron cloud. Thus the molecular energy curve 
never changes its repulsive character, even though the DD pattern changes very 
greatly - a behavior exactly opposite to that found in H2! 

3.3. Comparison of the results for H2 and He2 

Our findings on HE and He2 may be summarized as follows. There appears to 
exist a relation between the energy and the density pattern. However, this relation 
changes its character with the internuclear distance. To allow a meaningful 
comparison of the two systems in Fig. 1, those DD maps of H E and He2 a re  

placed next to each other which correspond to similar values of the overlap 
integral between the two principal atomic orbitals. 

At short distances, where the overlap is large, say ->0.8, the most prominent effects 
are due to the unshielded nuclear coulomb potential, which causes a density 
contraction and an overall repulsive interaction. The difference between the 
interactions in the two molecules manifests itself only in finer details, namely in 
a quadrupolar charge rearrangement in the outer region which adds or subtracts 
to the main effect of central contraction. 

At medium distances with medium overlap values, say 0.2 < S < 0.6, the driving 
effect is the change of the kinetic energy density resulting from orbital interference. 
Here bonding interference between the AO's in H2 results in energy lowering 
and central charge accumulation, whereas antibonding interference between the 
AO's in He2 changes both, energy and density, in the opposite direction. 

Finally, at very large distances and small overlap, say S-< 0.1, the interaction is 
of the van der Waals type, Valence-Bond or Spin-Valence type, that is it arises 
from the interelectronic interaction being reduced by correlation effects. In the 
case of polarizable open d shells in transition metal-atoms, this type of interaction 
may become quite strong without significantly influencing the density pattern. 

In most textbook interpretations of difference density maps, density accumulation 
between the nuclei is associated with bonding, and density depletion in this 
region is associated with an antibonding interaction. From the preceding analysis 
it is obvious that this relation only holds for intermediate overlap values and 
that the DD pattern is also indicative of the magnitude of the overlap. In H2 and 
He2, with only one interacting orbital per atom, the latter is simply related to the 
ratio of the internuclear distance to the orbital radius. Considerably more complex 
DD patterns are to be expected for molecules, which have several orbitals with 
different overlap strengths for any one internuclear distance, namely core-orbitals, 

type orbitals and ~ type orbitals. In the following sections we shall examine 
several such cases. 

3.4. Atoms with inner cores 

The atomic cores, which exist in all atoms other than H and He, do not participate 
in the binding process and they are inaccessible to exact X-ray determinations. 
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Their difference densities are therefore of  little interest here [15]. The cores exert 
however marked effects on the valence shell electrons so that valence shell DD 
patterns of  molecules with cores differ characteristically from those of the core-free 
molecules H2 and He> First, the Pauli-exclusion pseudo-repulsion prevents the 
valence electrons from entering the core regions (except for the orthogonalizing 
tails which establish the filled shell repulsions [ 15]). As a consequence, the valence 
electron distributions, second, gain the freedom to assume a wider variety of 
shapes, a flexibility which is commonly described by the mixing of s, p and 
possibly d orbitals, and which is related to the near degeneracy of orbitals with 
different 1-quantum numbers. 

The pseudopotential approach [ 16] offers an elegant and effective way of focussing 
attention on the valence electrons and discussing the just mentioned features 
without involving the core electrons. For the molecules considered here we require 
only the effective radial potentials for the 2s and 2p electrons. It turns out that 
these two are similar for the following reason. The effective potential for an 
electron in a 2s atomic orbital essentially accounts for the Pauli exclusion 
repulsion by the 1 s orbital. The effective potential for an electron in a 2p atomic 
orbital, on the other hand, does not contain such terms, instead it accounts for 
the centrifugal force arising from the non-vanishing angular momentum which 
is particularly strong in the core region. 

Figure 2 exhibits effective potentials of the cores acting on the valence electrons 
in several homonuclear diatomic molecules. The potentials of F2 illustrate the 
shape of an effective potential for a very electronegative element with a large 
effective nuclear charge and a small core. Except for very short internuclear 
distances these potentials are similar to the one of H2 in that the minima occur 
near the nuclei and a pronounced maximum exists at the bond center. The 
potential of  Li2 on the other hand illustrates the shape of an effective potential 
for an element of low electronegativity with a small effective nuclear charge and 
an extensive core. Here the potential is flat and comparatively low at the bond 
center for large and medium distances. For short distances, this potential has a 
minimum at the bond center which, due to the relatively large cores, is confined 
to a quite small region. 

The shape of the effective potential is expected to have the following effect on 
the charge distributions. We have explained earlier (Sect. 3.1, p. 475) that the 
quantum mechanical interference of overlapping AO's accumulates charge in the 
bond center and that this charge is drawn from the regions of maximum atomic 
valence density. These are the regions where the effective potential of the atom has 
its minima. Consequently, at larger bond distances (where AO interference is the 
main effect), DD minima occur for H2 at the nuclei but, for molecules with cores, 
they occur at points just outside the cores. At shorter distances the effective 
potential energy is lowered in the bond region so that charge accumulation in 
the bond is favored by both, the kinetic and the potential energy. The electron 
density will therefore increase in the molecular center and the DD minima between 
the bond center and the atomic cores will be filled in. For electropositive atoms 
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t h i s  o c c u r s  a l r e a d y  a t  f a i r l y  l a rge  i n t e r n u c l e a r  d i s t a n c e s ,  b e c a u s e  t h e  p o t e n t i a l  is 

l ow  a n d  f la t  i n  t h e  b o n d  r eg i on .  At  s h o r t  d i s t a n c e s  t h e  l a rge  a t o m i c  co re s  h a v e  

t he  ef fec t  o f  s q u e e z i n g  t h e  e l e c t r o n  d e n s i t y  p e r p e n d i c u l a r l y  a w a y  f r o m  t h e  b o n d  

axis .  

T h i s  k i n d  o f  r e a s o n i n g ,  w h i c h  is b a s e d  o n  t h e  p s e u d o - p o t e n t i a l  m o d e l ,  wi l l  p r o v e  

u s e f u l  in  unders tanding t h e  D D ' s  to  b e  p r e s e n t e d  in  t h e  s u b s e q u e n t  s e c t i o n s .  I t  
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should however  be noted that, as outlined in Sect. 2, the displayed DD's  are in 
fact calculated by all-electron ab initio (not pseudo-potential)  methods.  

3.5. The electron pair bond in Li2 

FORS difference density maps for Li2 are shown in Figs. 3 A - C  for the distances 
7 bohr, 5 bohr (approximately the equilibrium distance) and 3 bohr, respectively. 

At large distances the D D  is similar to that found in H2 at large distances (Fig. 
1A). Still there are three characteristic differences. First, because o f  the diffuse 
nature o f  the Li valence shell only  small D D  values occur. Second, while the 
integrated'population change in the core regions is insignificant, there occur local 
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charge shifts as depicted by the dipolar DD distribution near the nuclei. They 
are due to the orthogonalization of the valence tails from the other atom and are 
related to the nonbonded repulsion between the inner shell and the bonding 
orbitals [15]. Finally, because the effective valence potential in LiE is flat between 
the nuclei (Fig. 2), the accumulation of charge in the bond due to interference 
is further increased by charge contraction towards the center of the bond, whereas 
in H 2 the charge contraction, when it occurs, is directed towards the nuclei. 

Furthermore, whereas in H 2 the region of density increase remains about equal 
in size when the internuclear distance decreases, in Li2 this region is becoming 
constricted by the intrusion of the extended cores (see Fig. 3C). At R = 3 bohr 
the density maxima lie on a torus around the bond center. Moreover, because 
of the large overlap (0.79 at this distance) the cores are less shielded. They are 
therefore embedded in a significantly contracted charge cloud which results in 
a density increase of about 0.31 e//~k 3 inside the core. 

3.6. The non-bonded repulsions in Be2 

FORS difference density maps for Be2 are presented in Fig. 3D-F. For R > 4a 
the molecular energy curve of Be2 is nearly constant. It has an extremely shallow 
minimum between 4.5 and 5a [17]. 

The existence of the Be core results in the near-degeneracy between the 2s and 
2p orbitals, as mentioned earlier, and this leads to two flexibilities: orbital 
polarization and non-dynamical electron correlation. Both effects counteract the 
non-bonded repulsions between the occupied 2s shells in Be2 so that the DD's 
of Be2 and He2 are markedly different. 

Fhe effective potential in Be2 is flat around the bond center (except for very short 
internuclear distances), similar to the one in Li2 (Fig. 2). As in Li2, there occurs 
therefore a charge accumulation in the "bond"  of Be2 (Figs. 3A, B and 3D, E) 
even though the interatomic interaction is very small for the larger distance (Fig. 
3D) and quite repulsive for the shorter distance (Fig. 3E). These observations 
suggest that charge accumulation between atoms may have a good deal to do 
with the shape of the effective potential regardless of the binding or antibinding 
interaction. 

The Be2 and He2 DD maps have one feature in common, namely the "lone-pair- 
type" charge accumulations at the ends of the molecules (Figs. l I  and 3E). They 
are undoubtedly a result of the nonbonded repulsions of the overlapping s shells. 
By contrast, there occurs a charge depletion in these regions for the Li: molecule 
which has only one valence pair. 

As a curiosity we finally show the difference density of Be2 for R = 2a (Fig. 3F). 
At this short distance the Pauli repulsion between the atomic 2s-shells is so large 
that it squeezes the valence electrons from the 2s, 2po--NOs into the 2p~r-NOs 

2o-g2o-u and (A through a strong configuration interaction between 2 2 2tr~2~-~.2 2 
similar configuration interaction is ineffectual in He2 because, in the absence of 
inner cores, the effective potentials for s and p electrons are very different.) The 
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configuration interaction completely reverses the sign of  the DD-maps in Be2 as 
compared with those of He2 (Fig. 1H), even though the interatomic interaction 
is repulsive in both cases. Fig. 3F illustrates that there are cases where configu- 
ration interaction does influence the one-electron density significantly. A similar 
squeezing of  the valence electrons by the approaching cores was also observed 
in Li2 (Fig. 3C), whose effective potential has a similar shape as that of Be2 (Fig. 2). 

4. Analysis of the difference density in F 2 

There are several reasons why an analysis of the DD of F 2 is attractive. The 
molecule contains tr and 7r electrons and also several lone pairs. Yet the bond 
is simple. Moreover, the atom has a degenerate ground-state which raises impor- 
tant questions regarding the appropriate definition of the difference density. 

4.1. Total difference density at the equilibrium distance 

The total electron difference density for the Fz molecule at the equilibrium 
internuclear distance Re = 2.68a is shown in Fig. 4. From the FORS density of 
F2 the densities of two ground state atoms are subtracted. They are assumed to 
be in the 2 P  z s t a t e  with the singly occupied 2pcr-AOs pointing towards the other 
atom and thus overlapping to form the bond. This definition of the density 
difference of  F2 was first proposed by Bader et al. [18]. 

Figure 4A shows a slight density decrease at larger distances all around the 
molecule, indicating an overall orbital contraction upon bond formation. The 
density increase of 0.37 e /A  3 at the molecular center, although somewhat small in 
comparison with other o--bonds between second row atoms (for instance between 
C atoms [2-5] with DD's of about 0.6 e/A3), seems reasonable for a weak g-bond. 
There are pronounced density depressions (-0.79 e /A  3) on the internuclear axis 
between the bond center and the occupied atomic cores. The density increase of 
0.44 e//~ 3 behind the cores is typical for lonepair regions, although again somewhat 
low. (Compare, e.g. the results for N2, shown in Sect. 5.) 

4.2. Effects of correlation and basis set extension 

Before examining the detailed features in Fig. 4A we consider the correlation 
and basis-set effects. The density difference at the SCF level is very similar to 
the one found by Bader et al. [18] and is shown in Fig. 4B; the correlation density, 
i.e. the difference between Fig. 4A and B, is shown in Fig. 4C. Although the 
FORS method includes only "internal" correlations and thus omits certain "semi 
internal" correlations, which contribute markedly to the binding energy of F: 
[19], our correlation density is very similar to the one obtained by Schweig 
et al. [2] with an SCF-CI approach. It is seen that correlation enhances the long- 
range density contraction and the density increase in the lone pair region. It 
furthermore attenuates the SCF density changes between the atoms: the central 
SCF maximum of 0.51 e /A 3 is reduced to the aforementioned low value of 
0.37 e /A 3, and the extremely strong SCF depressions of -1.45 e /A 3 are about 
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ha l f  filled in. This large correlation correction is wel l  above the l imit o f  detectabil-  
ity and much  larger than correlation effects that are usual ly  met in va lence  shells 
[20]. 
The density difference o f  Fig. 4 D  is calculated from a FORS funct ion obtained 
with unmodi f i ed  atomic SCF orbitals. The  difference between Figs. 4 A  and 4 D  
therefore represents the molecular  density deformation due to orbital contraction 
and polarization.  It is shown in Fig. 4E. This orbital deformation has a similar 
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effect as correlation in as much as it contributes to both the overall density 
contraction and to the filling-in of the unusual density depressions between the 
atoms. However it counteracts correlation by increasing the central maximum by 
0.17 e /A 3. 

4.3. Decomposition in terms of FORS natural orbital contributions 

From the expansion coefficients the principal atomic contributors to the FORS 
NO's are readily recognized to be as follows: 

The NO's ltrg, lo'u, both of which have an occupation number of 2, are mainly 
composed of the ls AO's. 

The NO's 2o'~, 2tru, both of which have occupation numbers very close to 2, are 
mainly composed of the 2s AO's. 

The NO's 3O-g (occupation number= 1.868) and 3tru (occupation number 0.137) 
are mainly composed of the 2p~rAO's. 

The NO's 1% (occupation number=4)  and l zrg (occupation number=3.997) 
are mainly composed of the 2p~- AO's. 

Consequently it is meaningful to form the difference densities between the FORS 
NO's and the corresponding free atom AO's. 

The total FORS difference density of Fig. 4A is reproduced in Fig. 5A. It is 
decomposed into the three additive contributions of Fig. 5B-D. 

Figure 5B embodies the difference density which is the sum of the contributions 
from the orbitals ltrg, ltT,, 2O-g, 2~r, as explained above. Since all of these orbitals 
are doubly occupied, the density difference reflects the non-bonded repulsions, 
acting on the occupied atomic ls and 2s orbitals, which can be associated with 
the Pauli exclusion principle. It leads to a polarization of the ls shell [15] and 
the 2s shell and is responsible for the observed density depletion between the 
nuclei and the corresponding density increase behind the nuclei in the lone pair 
region. 

Figure 5C embodies the density difference 

[1.868(3trg)2 + 0.137(3tr,) 2] - 1.0025[(2ptr]eft)2 + (2ptrdght)2], 

which is associated with the formation of the bond. It is manifestly responsible 
for the density accumulation in the bond center. It shows the typical behavior 
of covalent interactions at relatively large internuclear separations: a density 
increase in the bond center and a slight density decrease in the outer region and 
in the vicinity of the nuclei, i.e. density changes due to orbital interference which 
are associated with a kinetic energy decrease and a slight potential energy increase. 
There is one characteristic difference between H E and F2 in that, in the latter, the 
immediate vicinity of the nuclei belongs to the ls inner shells from which the 
valence electrons are excluded as discussed in Sect. 3.4. Therefore, instead of a 
density decrease at the nuclei, as observed in HE at larger distances, one finds in 
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F2 a density decrease in the "inner parts" of the valence region "right outside the 
1S COreS". 

Figure 5D shows the difference between the nearly completely filled NO's l~ru, 
lzrg and the sum of the ~r-AO densities. This density difference is very small 
everywhere (<0.1 e/~3), implying a small interaction between the 2p~- AO's, a 
fact which is related to the comparatively large equilibrium distance. 

In summary, the difference density decomposition in terms of FORS NO contribu- 
tions permits characteristic details of the total density difference to be associated 
with specific interactions, namely the Pauli repulsion between the non-bonded s 
AO's and the covalent interference between the half filled 2po- AO's. 

4.4. Spherically averaged versus oriented atomic reference densities 

It is a commonly accepted practice to define experimental or theoretical density 
differences by subtracting the atoms in their neutral ground states from the 
molecule. In the case of degenerate ground states, most authors subtract the 
spherically averaged atomic density since it is the simplest unique choice [2-5]. 
In the case of fluorine this is (2p~r1~ The density difference obtained 
with this definition is presented in Fig. 5E. It exhibits a quadrupolar pattern with 
enormous maxima in the atomic 2p~r-AO region and corresponding minima on 
the molecular axis on both sides of the nuclei ( D D < - 5  e//~k3). It exhibits no 
density increase anywhere on the bond path nor in the lone pair region [32]. 

The breakdown into NO-contributions, given in Figs. 5F-H, demonstrates that 
this density difference is dominated by the transfer of 4/3 electrons from the 
atomic 2po- to the 2p~r AOs, which essentially reestablishes the oriented free 
atoms in the form they were used in the preceding section. This apparent density 
transfer, which has caused some discussion in the past [21], therefore simply 
reverses the averaging process by which the artificial atomic reference densities 
were formed. It is typical for bonded atoms with degenerate groundstates, such 
as B, C, O and F when located in sites of low local symmetry, and it is an order 
of magnitude larger than the DD-values obtained with oriented F atoms as is 
evident from the left side of Fig. 5. It completely swamps the fine details which 
are significant for the formation of the bond and which were discussed and 
explained in the preceding section. 

In order to confirm this interpretation we formed, for a free F atom, the difference 
between the oriented 2p~ groundstate density and the spherically averaged ground- 
state 215 density. We then superimposed these two purely atomic differences for 
two atoms placed at a distance 2.68 bohr from each other. The resulting difference 
map is shown in Fig. 6B. Manifestly, it is extremely similar to the density in Fig. 
6A, which is the same as that of Fig. 5E, i.e. the molecular difference formed 
with spherically averaged atoms. The latter therefore demonstrates that atoms 
which, in their free states, have quadrupolar density distributions, do maintain 
these distributions in an oriented manner, when they are embedded in certain 
molecules. In such cases, spherically averaged atoms form suitable promolecules 
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for exhibiting orientations of atoms in molecules, but they provide inappropriate 
promolecules for identifying density features that characterize binding effects, which 
are an order of magnitude smaller. 

The appropr ia te  choice of the atomic reference densi ty is trivially obvious in  F2. 
It is the 2Pz densi ty with the popula t ions  (2p~-42po-1). A general  defini t ion and  

a method  for de te rmin ing  un ique  and  useful  a tomic reference densit ies at sites 
of low symmetry  in any  specific molecule will be given elsewhere [22]. It leads 

to 2p~ in the case of  F2. 

We shall denote  a densi ty difference as a Chemical Difference Density (CDD)  if 
it is constructed with appropr ia te ly  or iented atomic reference states. 
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4.5. Dependence of the difference density upon the internuclear distance 

The F 2 bond is unusually long. For example, scaling a typical C- -C single bond 
length of 2.9a by the ratio of the effective nuclear charges of C (Z = 3.3) and F 
(Z = 5.3), one would expect a F - -F  bond length of about 1.8a. In fact, the 
experimental value is nearly one and a half times as large. It is generally accepted 
[23] that this unusual bond length is due to the non-bonded repulsions (Pauli 
repulsions) between the large number of lone pairs. 

It is therefore of interest to examine the difference densities for bond lengths 
shorter than 2.68a. Figs. 7A-D exhibit the total difference densities of F 2 for the 
internuclear distances R -- 2.68a = Re, 0.9R~, 0.8Re and 0.7Re = 1.88a ~ the scaled 
CC bond length. It is seen that, by the time R is reduced to the latter value, the 
difference density map exhibits "normaF' features, i.e. strong maxima in the bond 
center and no density depressions between the two nuclei. 

Fig. 8 furnishes the breakdown of the total difference density at R = 1.88a. Fig. 
8B shows that, at the shorter distance, with the stronger non-bonded Pauli 
repulsions, the density depletion between the atoms and the corresponding density 
increase in the lone pair regions behind the atoms are considerably stronger. Fig. 
8C shows that, at the shorter distance, the 2pit-overlap is more favorable and 
causes a much stronger density accumulation between the atoms. In fact, it is so 
substantial that it greatly overcompensates the density reduction shown in Fig. 
8B between the nuclei. Fig. 8D shows that, at the shorter distance, even the 2p~r 
interactions are strong enough to cause some density changes in the ~r-system. 

Figs. 8E-H show the corresponding density differences which result when spheri- 
cally averaged atoms are chosen as pro-molecular reference states. These maps 
demonstrate again that the purely atomic orientation effects, substantiated by 
Fig. 6, still swamp the chemically significant density differences of Figs. 8A-D, 
even though the latter are much stronger at the shorter ("normal") distance. 

4.6. Canonical SCF-MO versus FORS-NO contributions 

The comparison of Figs. 4A and B showed that, at the equilibrium distance 
Re = 2.68 bohr, the total SCF density difference is qualitatively similar to the total 
FORS density, and this was also found to be so for the 7r-contributions. The 
same similarity exists at the distance R = 1.88 bohr (the maps are not shown). 

The situation is different for the tr contributions, which are shown in Fig. 9 for 
Re = 2.68 bohr and in Fig. 10 for R = 1.88 bohr. We have seen that, in the FORS 
approach, the formation of natural orbitals yields NO's with high occupations 
and NO's with low occupations. The former are 2o-~ 2o-~ (occupations close to 
2) which have 10ne pair character with non-bonded repulsions (density depletion 
between the nuclei, density increase on the outside). The latter are 3trg and 3o-u 
(occupations 1.868 and 0.137 respectively at Re) and they establish the bond 
(density accumulation in the bond center). This clean separation into tr lone-pair 
NO's and tr-bonding'NO's corresponds to the concept of chemically active 
frontier orbitals. 
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By contrast, the canonical SCF MO's do not furnish such a clean separation. 
Here, both the 20% and 3o'g MO's have strong admixtures from the atomic 2s 
and 2po- AO's. This is so because of the variational character of the Fock equation: 
it selects orbitals with high and low orbital energies (not occupation numbers!) 
for a given total electron density. Because of this ambiguity we consider two 
alternative ways of forming density differences: 

First choice: 

(lo-~ + lo-2, +2o-~ + 2o-2,) - (ls 2, 2s 2 on both atoms): Figs. 9A, 10A; 

(3(r2g)-(2pz ~ on both atoms): Figs. 9B, 10B; 

Second choice: 

(1 trg+lo-,+2 2 3cr2+2cr2)-(ls22s12pzl on both atoms): Figs. 9C, 10C; 

(2o-~) - (2s 1 on both atoms): Figs. 9D, 10D. 
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It is apparent  that the lone pair characteristics go more with the 3O-g MO and 
that bonding goes more with the 2trg MO's. Although the second choice is 
somewhat more satisfactory, neither of  the two options yields a really satisfactory 
decomposit ion of the total density into individual contributions with simple 
physical meanings. Both suffer from exaggerated cancellations between large 
positive and negative contributions to the DD, especially at shorter distances. 

5. Analysis of the difference density in N2 

We want to confirm the method of  interpretation which we used for the F2 bond 
by using it also for the very different N2 bond. The groundstate of  the N atom 
has 4S symmetry. Its density is spherically symmetric and the problem of orienting 
the reference density does not arise in the formation of the DD. 

The total FORS difference density at the equilibrium distance of Re = 2.06a is 
exhibited in Fig. l lA .  It is very similar to the SCF-CI-DD map of Schweig et al. 
[2]. Figure 11B-D shows the FORS-NO contributions, similar to those presented 
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in Fig. 5B-D for F2. Because of the ~r-bonds the o--system in N2 is compressed, 
which is opposi te  to the situation in 172. A "normal" single tr-bond length for an 
effective nuclear charge o f  Z = 3.9 would  be expected to have a length of  about 
R =2 .46a .  Difference densities for this length are shown in Figs. 11E-H.  

The contributions of  the core and lone-pair G-electrons to the D D  are shown in 
Fig. l l B ,  F. They are qualitatively very similar to the nonbonding  contribution 
in F 2 (Figs. 5B and 8B) and, also, to the total DD of He2 at medium large 
distances (Fig. 2G). One might wonder why these nonbonded  DD's  are qualita- 
tively different from the total D D  of  Be2 (Figs. 3D,  E) which also has a nonbonded  

4 4 lO'g, u2O'g,u configuration. The reason is that, in Be2, the nonbonding  2o-g,, orbital 
pair can freely mix in 2p AO's which are not needed for any other purpose. In 
N 2 and F 2 these 2p-AO's are occupied by other valence electrons and, in He2, 
the p-AO's are lying at too high energies for effective mixing. 

The contribution of  the ~ -bonding  pair '" L98~ o.o2, ~jo-g jo- ,  ) in N2 (Fig. 11C, G) is also 
similar to that found in F2 at the "normal" bondlength (Fig. 8C). The bonding 
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r 3 . 8 7  0 . 1 3 x  7r-contribution of tTru ~rg ) in N2 (Fig. l lD ,  H) differs of course from the 
nonbonding 7r-contribution in F2 (Fig. 8D). Although the ~r-interaction in N 2 is 
small, even at Re, it is typical covalent in character: charge is transferred from 
the inner valence shell region to the overlap region. Because of the beginning 
7r-orbital contraction, the density depression near the atomic cores is smaller at 
Re than at R = 2.46a. 

As was the case for F2, canonical SCF orbitals are found to be less suitable for 
a decomposition of the DD of N2 into physically meaningful contributions. 
Figure 12A shows the 10rg, u2Org, u contribution, Fig. 12B shows the 30"g contribution. 
As in F 2 (Figs. 9D, 10D), the most strongly bonding orbital is the lowest valence 
orbital (Fig. 12D), whereas the higher MO's 2o-u, 3o'~ (Fig. 12C) have the character 
of two lone pairs. 

In N2 the difference density is positive everywhere on the axis between the two 
nuclei, except in the small inner shell core region. This is so for Re as well as 
for distances up to the "normal single bond length" of R = 2.46a (Fig. 11A and 
E). It also holds true for H2 at Re (Fig. 1D) and for F2 at the "normal single 
bond length" of R = 1.88a (Fig. 7D). At larger internuclear distances two negative 
difference density minima occur on the axis between the two atoms in N2 as 
they do in F2 (Fig. 7A-C) and in H E (Fig. 1A, B). This is so because, at these 
distances, AO interference shifts density from the inner valence shell (i.e. the 
region of low effective potential, see Fig. 2) to the bond center, while orbital 
contraction towards the effective potential minima does not yet occur. It suggests 
that two such regions of density depletion are indicative of an expanded or abnormally 
long bond. 

6. Conclusions and inferences 

6.1. Fundamental problems 

The study of electron densities is motivated by the hope of being able to identify 
features that will elucidate the nature of chemical bonding under various condi- 
tions. Not only do electron densities have an immediate conceptual appeal, but 
there moreover exist two theorems which relate them to dynamical quantities. 
The Hohenberg-Kohn Theorem [24] asserts that the total density contains the 
same information as the N-electron wavefunction and that there exists a functional 
which yields the energy in terms of the density. The Hellmann-Feynman Theorem 
[25] on the other hand provides a simple formula for calculating the forces 
between the atoms in a molecule from the exact electron density. 

Why then has it proven to be so difficult to relate questions of chemical bonding 
to electron densities? It seems to us that these difficulties are related to the 
following underlying problems. 

The simplicity of the fundamental Hohenberg-Kohn existence statement in no 
way implies a simple or obvious explicit relationship between density features 
and chemical properties. In fact, actual calculations of molecular energies from 
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molecular electron densities alone have so far proved abortive and Teller and 
Balasz [26] have shown that chemical bonding cannot be explained by any theory 
which is based on the local density alone, excluding its derivatives. Indeed, all 
current "density functional" calculations which have turned out to be chemically 
useful employ not only the local electron density, which is the object of the 
present inquiry, but in addition use the non-local (off-diagonal) parts of the 
density kernel for the evaluation of the kinetic energy. This experience reveals 
that the determination of the kinetic energy from the local density alone, even 
though possible in principle, is exceedingly difficult in practice. 

The kinetic energy plays however an essential role for the covalent binding 
process. The often invoked electrostatic explanation, as e.g. expressed by the 
statement: "The resulting concentrated cloud of negative charge in the overlap 
region acts as a kind of electrostatic cement that holds the nuclei together.. .  
chemical bonding is mainly an effect of the additional attractive forces between 
the nuclei due to the overlap clouds" [27], is a much too simplistic conjecture. 
It has been known for two decades [10] that, in fact, covalent binding results 
from a shift in the dynamic equilibrium of the electronic motion when bonds are 
formed. In this context, it is also instructive that, even in classical mechanics, a 
nondynamic, purely static equilibrium cannot exist between electrical charges, 
as was shown by Earnshaw many years ago [28]. 

The problems with the Hellman-Feynman theorem, finally, stem from the fact 
that it relates densities only to forces [6b]. Binding energies are however of 
considerably greater interest than interatomic forces and, for a given internuclear 
distance, the relation between the internuclear force and the interatomic energy 
is not at all transparent. It is not even qualitatively unique. For example, a 
vanishing force does not necessarily imply the existence of a chemical bond, 
because the force also vanishes for metastable states, where the energy is higher 
than that of the separated atoms, and also at the top of energy barriers between 
reactants and products. Moreover, forces are proportional to r -2 and therefore 
weigh the core regions much more heavily [15] than the energy which is propor- 
tional to r -1. By contrast, chemical binding can actually be fairly well described 
by pseudo-potential methods which completely suppress the core effects ! Finally, 
since according to the Hellmann-Feynman theorem density behind the nuclei 
yields repulsive force contributions, there is no simple explanation for the accumu- 
lation of charge in the lone pair regions from this point of view. 

In view of the aforementioned obstacles it is to be expected that non-trivial 
analyses will be needed to extract chemical information from molecular densities. 

Recently, Bader et al. and Cremer and Kraka [6a] have proposed a novel 
complementary approach. These authors examined the first and second derivatives 
of the total molecular density and were able to identify charge modulations in 
bond, lone pair and other regions. 

In our opinion the route via difference densities is close to chemical thinking 
and therefore deserves serious attention. The quantitative analyses presented in 
this investigation are meant to shed light on the opaque relationships between 
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chemical interactions and the details of difference density contours. It appears 
that many of their intricate details can be understood and related to energy 
changes through a decomposition and, moreover, that the natural orbitals of the 
density operator offer a unique and conceptually simple vehicle to this end. It is 
our hope that, with the help of appropriate models within this framework, it may 
be possible to conceptually synthesize prototype patterns for total difference 
densities and that the recognition of such patterns may prove useful for charac- 
terizing chemical situations. In the subsequent section we summarize the inferen- 
ces we draw from the systems which we have considered. 

6.2. Characteristics of difference densities 

Total difference densities. States of free atoms are not spherically symmetric but 
they belong to irreducible representations of the three-dimensional rotation- 
reflection group. Consequently, densities of degenerate atomic states, such as the 
2p groundstate of fluorine, are not necessarily spherically symmetric monopoles, 
but quadrupolar (or possibly hexadekupolar) distributions. No contradiction 
exists between this statement and the observation that the response of a free atom 
to any measurement exhibits spherical symmetry because, in the absence of other 
interactions, the atom will instantly align itself with the experimental probe 
regardless of the directional approach. When embedded in a molecule or crystal, 
on the other hand, the interatomic directional forces cause orientations of the 
atomic building blocks relative to each other whose stability is much stronger 
than the interactions with, say, probing X-rays. Such atomic orientations therefore 
show up in density determinations by X-ray diffraction and the corresponding 
density quadrupoles are strikingly exhibited on those DD maps which are formed 
by subtracting spherically averaged atomic reference densities. We believe that 
these atomic orientations represent significant experimental information and that 
the appropriate definition and determination of such orientations is an important 
objective. We shall discuss a practical approach to its solution elsewhere [22]. 

Although the orientation of a free atom in a degenerate state requires no expen- 
diture of energy, the concomitant density changes are often an order of magnitude 
larger than the density deformations that are associated with interatomic chemical 
interactions. In order to exhibit significant features of the latter it is therefore 
necessary to construct Chemical Difference Densities (CDDs) by subtracting, from 
the molecular densities, appropriately defined oriented atomic promolecule 
densities [22]. Indeed the analysis of any theoretically calculated molecular 
wavefunction automatically yields specific oriented atomic states for any given 
molecule [29]. Furthermore, the disappointing experiences which have been made 
with the conventional "experimental" difference densities, obtained by the sub- 
traction of sphericalized promolecules, confirm that this arbitrary approach does 
not lend itself very well to an illuminating bonding analysis. We conclude that, 
for such analyses to be successful, the aforementioned chemical difference 
densities are indispensable. 

The interpretation of CDDs is relatively straightforward when there are only a 
few interacting valence electrons. For electron-rich molecules a decomposition 
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into meaningful contributions from electronic subsystems seems to us essential, 
if one wishes to gain a deeper understanding of the various features of CDD's. 
We have found decompositions in terms of MCSCF (FORS) natural orbitals 
(NO's) to be effective and instructive. We confirm the observations of others [6b] 
that canonical SCF orbitals are unsatisfactory in this context. Conceivably non- 
canonical SCF-MO's could be defined which yield more meaningful decomposi- 
tions of the SCF approximation to the CDD. A reasonable approach may be to 
construct those orthogonal SCF MO's which have maximum overlap with 
appropriate linear combinations of densities of the SCF AO's of the free atoms. 

The characteristic pattern of a natural orbital contribution to the CDD depends 
upon the bond length, specifically whether the internuclear distance is to be 
considered as short, medium or long for the particular natural orbital. These 
distinctions are based on the value of the overlap integral between the dominant 
AO's from which the NO is built. A "medium" bondlength corresponds to an 
AO overlap integral of  about 0.3-0.6. For a bonding orbital, the "normal" 
equilibrium distance tends to fall into this range when other valence electron 
interactions are absent. Overlap integrals of much less than 0.3 define "long" 
distances, overlap integrals much larger than 0.6 define "short"  distances. It is 
quite possible that a particular internuclear distance counts as short for one NO, 
as medium for another NO and as long for a third NO in the same molecule. 
In such cases the various contributions have different characteristic patterns 
whose superposition can give a rather complex appearance to the total CDD. 

Clearly, greatest insight is obtained by following up all NO contributions in a 
molecule separately as functions of the internuclear distance. Unfortunately, only 
within the theoretical approach is it possible to do so. The experimentalist is 
usually limited to measuring total densities at equilibrium distances. The only 
hope we can hold out at this time is that, on the basis of a sufficient volume of 
theoretical analyses, one will be able to deduce typical and well understood 
patterns for those difference density maps which are experimentally accessible. 

Orbital difference density contributions. At large internuclear distances the nuclear 
coulomb field is still well shielded and the kinetic energy density has not changed 
much. Here interactions between atoms arise from electron correlation effects 
which reduce the interelectronic coulombic repulsion energy. Such correlations 
can be suitably described by valence-bond type approaches. Configuration inter- 
action is especially important for quasidegenerate open-shell atoms. Examples 
are the ~--~-* manifold in systems with double bonds and the d-shells in transition 
metal atoms. In such cases there can exist significant energetic effects while the 
one-electron densities undergo only small changes so that the CDD map contains 
little information. An example is the 7r-contribution for the elongated N2 
molecule, as shown in Fig. l lH .  

At medium internuclear distances there occurs an interference between the con- 
tributing atomic orbitals which yields significant changes in the one-electron 
density. Concomittantly there result changes in the kinetic energy density which 
are essentially responsible for the substantive variations of the molecular energy 
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in this range. Constructive interference, accumulating charge in the bond, is 
associated with covalent bonding whereas destructive interference, pushing charge 
away from the bond region, is associated with non-bonded repulsions. These 
density changes can however be modified by orbital polarization and orbital 
contraction. They are moreover characteristically influenced by the shape of the 
effective potential, by the type of quasidegeneracy in the valence shell and by 
the orbital symmetry. 

At short internuclear distances interference between atomic orbitals decreases 
and, in addition, the atoms become increasingly deshielded. Consequently, 
nuclear coulombic repulsions and, to some degree, core-core repulsions dominate 
the interatomic energy. Under the influence of the strong nuclear attractions the 
electron density contracts but, in doing so, it must stay outside the occupied 
cores [30]. 

The range of intermediate internuclear distances is the most interesting one and 
deserves a more detailed discussion. While interference is the major density 
changing effect towards the long end of this range, in the middle and especially 
towards the short end one must also take into account the "variational response" 
to the kinetic-energy-density change. When interference lowers the kinetic energy 
(typical bonding case), then the variational response consists of a density contrac- 
tion towards the minima of the effective potentials. When an increase of the 
kinetic energy through destructive interference occurs between lone pairs with 
non-bonded repulsions, the response is weaker because of the greater rigidity of 
completely filled orbitals, but there can still occur density contractions. The 
shapes and magnitudes of the additional density changes resulting from the 
variational response depend on the shapes of the effective potentials, on the 
polarizability (s-p mixing) of the subsystems, on the symmetry of the dominant 
AO's in the particular NO, and on the presence of other valence electrons in 
possibly excluding orbitals. 

In the case of most o- bonding contributions, the overlap region is the place where 
the kinetic energy density is low and where, at the same time, the effective potential 
is low. Consequently interference as well as the variational response favor charge 
accumulation in the bond. However this is not always so. For example, at short 
distances between big cores (see e.g. lower left of Fig. 2) the charge density is 
pushed away from the bond axis, and at large distances between small and 
strongly electronegative cores, where there is an effective potential maximum at 
the bond center (see, e.g. top right of Fig. 2), the variational response is directed 
towards the rim of the atomic cores (see Fig. 4E). The H2 molecule is an extreme 
case of this type. Thus, a small population in a or bond can be indicative of 
several situations: a long bond with small overlap; small cores of strongly 
electronegative atoms generating an effective potential with a maximum in the 
bond center (see Figs. 5A and llE); or the close approach of large weakly 
attracting cores (see Fig. 3B). 

In general the contributions from zr bonds are markedly weaker than those from 
or bonds (see Figs. 8 and 11). Although a 7r-bond is characterized by charge 
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accumulation in a torus around the bond axis (see Fig. l iD),  an oblate total DD 
population does not necessarily imply 7r-bonding. The repulsive effect of occupied 
cores, when they approach sufficiently close, can squeeze the o- bond population 
away from the bond axis (see Figs. 3 and 11). Even in N2 with two 7r-bonds, the 
latter are only partially responsible for the positive DD off the bond axis. Similarly, 
in Li2 the cr2-Tr 2 configuration mixing is only partially responsible for the oblate 
bond charge in Fig. 3B, C. 

Charge depletions in the overlap region, which are typical for contributions from 
lone pairs between which there exist non-bonded repulsions are observed in He2 
(Fig. IF, G), F2 (Fig. 5B, 8B) and N2 (Fig.qlB, F). In these cases the effective 
potential has a maximum in the bond center. However, when the effective potential 
is flat in the bond, then there can exist variational deformation responses (similar 
to those for bonding contributions) which compensate or possibly overcom- 
pensate the aforementioned charge depletions. For example, in Be2 we find a 
density increase in the molecular center (see Figs. 2 and 3D, E). (This "bond 
charge" is thus not directly related to the fact that, for R > 4a, electron correlation 
cancels the non-bonded repulsions). In the hydrogen bond OH...O' it is found 
[31] that the non-bonded repulsion between the bond pair in OH and the lone 
pair on O' causes a charge depletion in the long hydrogen bond H-..O', where 
the effective potential is comparatively high, and a charge accumulation in the 
OH bond region where the potential is lower. The non-bonded repulsion is 
overcompensated by the electrostatic attraction, yielding the hydrogen bond. In 
the F2 molecule the non-bonded o- lone pairs exhibit the simple charge depletion 
in the bond (see Figs. 5B, 8B), but a different pattern is displayed by the 7r-lone 
pair contributions. Although non-bonding, they show a slight density increase 
around the bond center (Figs. 5D, 8D) with a maximum at about 0.3/~ off the 
molecular axis where the effective p-potential is flatter than on the axis (see 
Fig. 2). 

A special kind of non-bonded repulsion is that between the inner core of one 
atom and the valence orbitals on other atoms. Although its energetic effect is 
comparatively small, it often gives rise to a noticeable feature of DD maps, 
namely a dipolar pattern close to the nucleus which arises from the orthogonali- 
zation of the valence orbitals of other atoms to the core orbital [15]. 

In view of the many varied electronic interactions that come into play in molding 
the total density, the intricate details of total DD's should not be surprising. We 
are gratified that there appear to exist decompositions into subsystems whose 
contributions can be explained on the basis of well-documented energetic reason- 
ing so that the origin of total density patterns can be better understood. 

6.3. Experimental implications 

The results obtained here lead to a suggestion regarding experimental practices. 
If the differences between the densities of oriented and those of spherically 
averaged atoms can be as large as those shown in Fig. 6, namely up to four 
electron/~ 3, then questions arise concerning the refinement of X-ray structure 
factors by using form factors from spherically averaged atoms only. In general, 
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the systematic features of residual difference densities result from two contribu- 
tions: those due to orientations of nonspherical atoms and those due to binding 
and antibinding interactions. Of these, the former are conceptually considerably 
simpler than the latter. In cases where, as in F2, the former are moreover 
substantially larger than the latter, it would seem advantageous to include the 
atomic orientations in the refinement process. 

If the thermal vibration tensors are based on neutron or high-order X-ray data, 
then the large quadrupolar density contributions which are possible for atoms 
with open valence shells will result in comparatively large R-values. In such 
cases, it should be easily possible to determine the valence shell quadrupole 
tensors of those atoms and simultaneously reduce the R-factor significantly. On 
the other hand, if low-order X-ray data are included in the determination of the 
thermal smearing parameters, then the nonsphericity of an atom will modify the 
thermal parameters, especially their anisotropy and anharmonicity. In such cases, 
more reliable thermal parameters should be obtained if both, the thermal tensors 
and the valence shell orientations are refined simultaneously, because the former 
more strongly influence high-angle scattering, whereas the latter more strongly 
influence low-angle scattering. In many cases the valence shell asymmetry can 
be guessed at on the basis of simple molecular-orbital or ligand-field arguments. 

While accounting for the atomic asymmetries in the refinement process should 
lead to more reliable thermal parameters, it will not improve atomic positions. 
This is so because atomic densities do not have dipolar distributions and hence 
cannot account for the smaller chemical deformations of dipolar type [15]. 
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